UBF levels determine the number of active ribosomal RNA genes in mammals
نویسندگان
چکیده
In mammals, the mechanisms regulating the number of active copies of the approximately 200 ribosomal RNA (rRNA) genes transcribed by RNA polymerase I are unclear. We demonstrate that depletion of the transcription factor upstream binding factor (UBF) leads to the stable and reversible methylation-independent silencing of rRNA genes by promoting histone H1-induced assembly of transcriptionally inactive chromatin. Chromatin remodeling is abrogated by the mutation of an extracellular signal-regulated kinase site within the high mobility group box 1 domain of UBF1, which is required for its ability to bend and loop DNA in vitro. Surprisingly, rRNA gene silencing does not reduce net rRNA synthesis as transcription from remaining active genes is increased. We also show that the active rRNA gene pool is not static but decreases during differentiation, correlating with diminished UBF expression. Thus, UBF1 levels regulate active rRNA gene chromatin during growth and differentiation.
منابع مشابه
The splice variants of UBF differentially regulate RNA polymerase I transcription elongation in response to ERK phosphorylation
The mammalian architectural HMGB-Box transcription factor UBF is ubiquitously expressed in two variant forms as the result of a differential splicing event, that in the UBF2 deletes 37 amino acid from the second of six HMGB-boxes. Several attempts to define a function for this shorter UBF2 protein have been less than satisfactory. However, since all mammals appear to display similar levels of t...
متن کاملCellular regulation of ribosomal DNA transcription:both rat and Xenopus UBF1 stimulate rDNA transcription in 3T3 fibroblasts.
A novel RNA polymerase I (RPI) driven reporter gene has been used to investigate the in vivo role of the architectural ribosomal transcription factor UBF in gene activation and species specificity. It is shown that the level of UBF overexpression in NIH3T3 cells leads to a proportionate increase in the activities of both reporter and endogenous ribosomal genes. Further, co-expression of UBF ant...
متن کاملConditional Inactivation of Upstream Binding Factor Reveals Its Epigenetic Functions and the Existence of a Somatic Nucleolar Precursor Body
Upstream Binding Factor (UBF) is a unique multi-HMGB-box protein first identified as a co-factor in RNA polymerase I (RPI/PolI) transcription. However, its poor DNA sequence selectivity and its ability to generate nucleosome-like nucleoprotein complexes suggest a more generalized role in chromatin structure. We previously showed that extensive depletion of UBF reduced the number of actively tra...
متن کاملUBF activates RNA polymerase I transcription by stimulating promoter escape.
Ribosomal RNA gene transcription by RNA polymerase I (Pol I) is the driving force behind ribosome biogenesis, vital to cell growth and proliferation. The key activator of Pol I transcription, UBF, has been proposed to act by facilitating recruitment of Pol I and essential basal factor SL1 to rDNA promoters. However, we found no evidence that UBF could stimulate recruitment or stabilization of t...
متن کاملc-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation
Loss of c-MYC is required for downregulation of ribosomal RNA (rRNA) gene (rDNA) transcription by RNA Polymerase I (Pol I) during granulocyte differentiation. Here, we demonstrate a robust reduction of Pol I loading onto rDNA that along with a depletion of the MYC target gene upstream binding factor (UBF) and a switch from epigenetically active to silent rDNA accompanies this MYC reduction. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 183 شماره
صفحات -
تاریخ انتشار 2008